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Abstract

We address the complexity and practically e�cient methods for robust discrete optimization

under ellipsoidal uncertainty sets� Speci�cally� we show that the robust counterpart of a discrete

optimization problem with correlated objective function data is NP �hard even though the nominal

problem is polynomially solvable� For uncorrelated and identically distributed data� however� we

show that the robust problem retains the complexity of the nominal problem� For uncorrelated� but

not identically distributed data we propose an approximation method that solves the robust problem

within arbitrary accuracy� We also propose a Frank�Wolfe type algorithm for this case� which we prove

converges to a locally optimal solution� and in computational experiments is remarkably e�ective�

Finally� we propose a generalization of the robust discrete optimization framework we proposed earlier

that �a	 allows the key parameter that controls the tradeo� between robustness and optimality to

depend on the solution and �b	 results in increased 
exibility and decreased conservatism� while

maintaining the complexity of the nominal problem�

�Boeing Professor of Operations Research� Sloan School of Management and Operations Research Center� Massachusetts

Institute of Technology� E������� Cambridge� MA ��	�
� dbertsim�mit�edu� The research of the author was partially

supported by the Singapore�MIT alliance�
yNUS Business School� National University of Singapore� dscsimm�nus�edu�sg�

�



� Introduction

Robust optimization as a method to address uncertainty in optimization problems has been in the

center of a lot of research activity� Ben�Tal and Nemirovski ��� �� �� and El�Ghaoui et al� �	� 
� propose

e�cient algorithms to solve certain classes of convex optimization problems under data uncertainty that

is described by ellipsoidal sets�

Kouvelis and Yu ���� propose a framework for robust discrete optimization� which seeks to 
nd a

solution that minimizes the worst case performance under a set of scenarios for the data� Unfortunately�

under their approach� the robust counterpart of a polynomially solvable discrete optimization problem

can be NP �hard� Bertsimas and Sim ��� �� propose an approach in solving robust discrete optimization

problems that has the �exibility of adjusting the level of conservativeness of the solution while preserving

the computational complexity of the nominal problem� This is attractive as it shows that adding

robustness does not come at the price of a change in computational complexity� Ishii et� al� ���� consider

solving a stochastic minimum spanning tree problem with costs that are independently and normally

distributed leading to a similar framework as robust optimization with an ellipsoidal uncertainty set�

However� to the best of our knowledge� there has not been any work or complexity results on robust

discrete optimization under ellipsoidal uncertainty sets�

It is thus natural to ask whether adding robustness in the cost function of a given discrete opti�

mization problem under an ellipsoidal uncertainty set leads to a change in computational complexity

and whether we can develop practically e�cient methods to solve robust discrete optimization problems

under ellipsoidal uncertainty sets�

Our objective in this paper is to address these questions� Speci
cally our contributions include�

�a� Under a general ellipsoidal uncertainty set that models correlated data� we show that the robust

counterpart can be NP �hard even though the nominal problem is polynomially solvable in contrast

with the uncertainty sets proposed in Bertsimas and Sim ��� ���

�b� Under an ellipsoidal uncertainty set with uncorrelated data� we show that the robust problem

can be reduced to solving a collection of nominal problems with di�erent linear objectives� If the

distributions are identical� we show that we only require to solve r�� nominal problems� where r

is the number of uncertain cost components� that is in this case the computational complexity is

preserved� Under uncorrelated data� we propose an approximation method that solves the robust

problem within an additive �� The complexity of the method is O��ndmax�
���������� where dmax

is the largest number in the data describing the ellipsoidal set� We also propose a Frank�Wolfe
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type algorithm for this case� which we prove converges to a locally optimal solution� and in com�

putational experiments is remarkably e�ective� We also link the robust problem with uncorrelated

data to classical problems in parametric discrete optimization�

�c� We propose a generalization of the robust discrete optimization framework in Bertsimas and Sim

��� that allows the key parameter that controls the tradeo� between robustness and optimality to

depend on the solution� This generalization results in increased �exibility and decreased conser�

vatism� while maintaining the complexity of the nominal problem�

Structure of the paper� In Section �� we formulate robust discrete optimization problems under

ellipsoidal uncertainty sets �correlated data� and show that the problem is NP �hard even for nominal

problems that are polynomially solvable� In Section �� we present structural results and establish that

the robust problem under ball uncertainty �uncorrelated and identically distributed data� has the same

complexity as the nominal problem� In Sections � and �� we propose approximation methods for the

robust problem under ellipsoidal uncertainty sets with uncorrelated but not identically distributed data�

In Section �� we present the generalization of the robust discrete optimization framework in Bertsimas

and Sim ���� In Section 	� we present some experimental 
ndings relating to the computation speed and

the quality of robust solutions� The 
nal section contains some concluding remarks�

� Formulation of Robust Discrete Optimization Problems

A nominal discrete optimization problem is�

minimize c�x

subject to x � X�
���

with X � f�� �gn� We are interested in problems where each entry �cj � j � N � f�� �� � � � � ng is uncertain
and described by an uncertainty set C� Under the robust optimization paradigm� we solve

minimize max
�c�C

�c�x

subject to x � X�

���

Writing �c � c� �s� where c is the nominal value and the deviation �s is restricted to the set D � C � c�

Problem ��� becomes�

minimize c�x� ��x�

subject to x � X�
���

�



where ��x� � max�s�D �s�x� Special cases of Formulation ��� include�

�a� D � fs � �sj � ��� dj�g� leading to ��x� � d�x�

�b� D � fs � k�����sk� � �g that models ellipsoidal uncertainty sets proposed by Ben�Tal and Ne�
mirovski ��� �� �� and El�Ghaoui et al� �	� 
�� It easily follows that ��x� � �

p
x��x� where � is the

covariance matrix of the random cost coe�cients� For the special case that � � diag�d�� � � � � dn��

i�e�� the random cost coe�cients are uncorrelated� we obtain that ��x� � �
qP

j�N djx
�
j � �

p
d�x�

�c� D � fs � � � sj � dj �j � J�
P

k�N
sk
dk

� �g proposed in Bertsimas and Sim ���� It follows that

in this case ��x� � maxfS�jSj���S�Jg
P

j�S djxj � where J is the set of random cost components�

Bertsimas and Sim ��� show that Problem ��� reduces to solving at most jJ j�� nominal problems
for di�erent cost vectors� In other words� the robust counterpart is polynomially solvable if the

nominal problem is polynomially solvable�

Under models �a� and �c�� robustness preserves the computational complexity of the nominal prob�

lem� Our objective in this paper is to investigate the price �in increased complexity� of robustness under

ellipsoidal uncertainty sets �model �b�� and propose e�ective algorithmic methods to tackle models �b��

�c��

Our 
rst result is unfortunately negative� Under ellipsoidal uncertainty sets with general covariance

matrices� the price of robustness is an increase in computational complexity� The robust counterpart

may become NP �hard even though the nominal problem is polynomially solvable�

Theorem � The robust problem ��� with ��x� � �
p
x��x �Model �b�� is NP �hard� for the following

classes of polynomially solvable nominal problems� shortest path� minimum cost assignment� resource

scheduling� minimum spanning tree�

Proof � Kouvelis and Yu ���� prove that the problem

minimize maxfc�
�
x� c�

�
xg

subject to x � X�
���

is NP �hard for the polynomially solvable problems mentioned in the statement of the theorem� We

show a simple transformation of Problem ��� to Problem ��� with ��x� � �
p
x��x as follows�

maxfc��x� c��xg � max

�
c�
�
x� c�

�
x

�
�
c�
�
x� c�
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c��x� c��x

�
�

����c��x� c��x

�

����
�

c��x� c��x

�
�
�

�

q
x��c� � c���c� � c���x�

The NP �hard Problem ��� is transformed to Problem ��� with ��x� � �
p
x��x� c � �c� � c�����

� � ��� and � � �c� � c���c� � c��
�� Thus� Problem ��� with ��x� � �

p
x��x is NP �hard�

We next would like to propose methods for model �b� with � � diag�d�� � � � � dn�� We are thus

naturally led to consider the problem

G� � min
x�X

c�x� f�d�x� ���

with f��� a concave function� In particular� f�x� � �
p
x models ellipsoidal uncertainty sets with

uncorrelated random cost coe�cients �model �b���

� Structural Results

We 
rst show that Problem ��� reduces to solving a number of nominal problems ���� Let W �

fd�x j x � f�� �gng and ��w� be a subgradient of the concave function f��� evaluated at w� that is�
f�u�� f�w� � ��w��u� w� �u � R� If f�w� is a di�erentiable function and f ���� ��� we choose

��w� �

���
��

f ��w� if w � Wnf�g�
f	dmin
�f	�


dmin
if w � ��

where dmin � minfj� dj��g dj �

Theorem � Let

Z�w� � min
x�X

�c� ��w�d��x � f�w�� w��w�� ���

and w� � argminw�W Z�w�� Then� w� is an optimal solution to Problem �	� and G� � Z�w���

Proof � We 
rst show that G� � minw�W Z�w�� Let x� be an optimal solution to Problem ��� and

w� � d�x� � W � We have

G� � c�x� � f�d�x�� � c�x� � f�w�� � �c� ��w��d��x� � f�w��� w���w��

� min
x�X

�c� ��w��d��x� f�w��� w���w�� � Z�w�� � min
w�W

Z�w��
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Conversely� for any w � W � let yw be an optimal solution to Problem ���� We have

Z�w� � �c� ��w�d��yw � f�w�� w��w�

� c�yw � f�d�yw� � ��w��d�yw � w�� �f�d�yw�� f�w��

� c�yw � f�d�yw� �	�

� min
x�X

c�x� f�d�x� � G��

where inequality �	� for w � Wnf�g follows� since ��w� is a subgradient� To see that inequality �	�
follows for w � � we argue as follows� Since f�v� is concave and v � dmin �v � Wnf�g� we have

f�dmin� � v � dmin

v
f��� �

dmin

v
f�v�� �v � Wnf�g�

Rearranging� we have

f�v�� f���

v
� f�dmin�� f���

dmin
� ���� �v � Wnf�g�

leading to �����d�yw � ��� �f�d�yw�� f���� � �� Therefore G� � minw�W Z�w��

Note that when dj � ��� then W � f�� ��� � � � � n��g� and thus jW j � n � �� In this case� Problem

��� reduces to solving n� � nominal problems ���� i�e�� polynomial solvability is preserved� Speci
cally�

for the case of an ellipsoidal uncertainty set � � ��I � leading to ��x� � �
qP

j �
�x�j � ��

p
e�x� we

derive explicitly the subproblems involved�

Proposition � Under an ellipsoidal uncertainty set with ��x� � ��
p
e�x�

G� � min
w���������n

Z�w��

where

Z�w� �

����
���
minx�X

	
c �

��

�
p
w
e


�
x�

��
p
w

�
if w � �� � � � � n�

minx�X �c���e��x if w � ��

�
�

Proof � With ��x� � ��
p
e�x� we have f�w� � ��

p
w� Substituting ��w� � f ��w� � �����

p
w�� � w �

Wnf�g and ���� � �f�dmin�� f�����dmin � f���� f��� � �� to Eq� ��� we obtain Eq� �
��

An immediate corollary of Theorem � is to consider a parametric approach as follows�

Corollary � An optimal solution to Problem �	� coincides with one of the optimal solutions to the

parametric problem�

minimize �c � 	d��x

subject to x � X�
���

for 	 � ���e�d�� ������
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This establishes a connection of Problem ��� with parametric discrete optimization �see Gus
eld

����� Hassin and Tamir ������ It turns out that if X is a matroid� the minimal set of optimal solutions

to Problem ��� as 	 varies is polynomial in size� see Eppstein ��� and Fern et� al� ����� For optimization

over a matroid� the optimal solution depends on the ordering of the cost components� Since� as 	 varies�

it is easy to see that there are at most
�n
�

�
� � di�erent orderings� the corresponding robust problem is

also polynomially solvable�

For the case of shortest paths� Karp and Orlin ���� provide a polynomial time algorithm using the

parametric approach when all dj �s are equal� In contrast� the polynomial reduction in Proposition �

applies to all discrete optimization problems�

More generally� jW j � dmaxn with dmax � maxj dj � If dmax � n� for some 
xed 
� then Problem

��� reduces to solving n��n � �� nominal problems ���� However� when dmax is exponential in n� an

approach that enumerates all elements of W does not preserve polynomiality� For this reason� as well

as deriving more practical algorithms even in the case that jW j is polynomial in n we develop in the

next section new algorithms�

� Approximation via Piecewise Linear Functions

In this section� we develop a method for solving Problem ��� that is based on approximating the function

f��� with a piecewise linear concave function� We 
rst show that if f��� is a piecewise linear concave
function with a polynomial number of segments� we can also reduce Problem ��� to solving a polynomial

number of subproblems�

Proposition � If f�w�� w � ��� e�d� is a continuous piecewise linear concave function of k segments�

then

min
x�X

�c� �jd�
�x� ����

where �j is the gradient of the jth linear piece of the function f����

Proof � The proof follows directly from Theorem � and the observations that if f�w�� w � ��� e�d� is
a continuous piecewise linear concave function of k linear pieces� the set of subgradients of each of the

linear pieces constitutes the minimal set of subgradients for the function f �

We next show that approximating the function f��� with a piecewise linear concave function leads
to an approximate solution to Problem ����

	



Theorem 	 For W � �w�w� such that d�x � W �x � X� let g�w�� w � W be a piecewise linear concave

function approximating the function f�w� such that ��� � f�w�� g�w� � �� with ��� �� � �� Let xH be

an optimal solution of the problem�

minimize c�x� g�d�x�

subject to x � X
����

and let GH � c�xH � f�d�xH�� Then�

G� � GH � G� � �� � ���

Proof � We have that

G� � min
x�X

fc�x� f�d�x�g
� GH � c�xH � f�d�xH�

� c�xH � g�d�xH� � �� ����

� min
x�X

fc�x� g�d�x�g� ��

� min
x�X

fc�x� f�d�x�g� �� � �� ����

� G� � �� � ���

where inequalities ���� and ���� follow from ��� � f�w�� g�w� � ���

We next apply the approximation idea to the case of ellipsoidal uncertainty sets� Speci
cally� we

approximate the function f�w� � �
p
w in the domain �w�w� with a piecewise linear concave function

g�w� satisfying � � f�w�� g�w� � � using the least number of linear pieces�

Proposition 	 For � � �� w� given� let � � ��� and for i � �� � � � � k let

wi � ��

��
��



i�

sp
w�

��
�
�

�

��

� �

�

��
�

�

� ����

Let g�w� be a piecewise linear concave function on the domain w � �w�� wk�� with breakpoints �w� g�w�� �
f�w���

p
w��� � � � � �wk��

p
wk�g� Then� for all w � �w�� wk�

� � �
p
w � g�w� � ��






Proof � Since at the breakpoints wi� g�wi� � �
p
wi� g�w� is a concave function with g�w� � �

p
w� �w �

�w�� wk�� For w � �wi��� wi�� we have

�
p
w � g�w� � �

p
w �

�
�
p
wi�� �

�
p
wi � �pwi��
wi � wi��

�w� wi���
�

� �

�p
w �p

wi�� � w� wi��p
wi �

p
wi��

�
�

The maximum value of �
p
w � g�w� is attained at

p
w� � �

p
wi �

p
wi������ Therefore�

�
p
w � g�w� � �

�p
w� � p

wi�� � w� � wi��p
wi �

p
wi��

�

� �

���
��
p
wi �p

wi��
�

�
�p

wi�
p
wi��

�

�� � wi��p
wi �

p
wi��

���
��

� �

��
�
p
wi �p

wi��
�

�
�p

wi�

p
wi��

�

��p
wi�pwi��

�

�
p
wi �

p
wi��

��
�

�
��
p
wi �p

wi����

��
p
wi �

p
wi���

� �� � �� ����

where Eq� ���� follows by substituting Eq� ����� Since

max
w��wi���wi�

�
�
p
w � g�w�

�
� ��

the proposition follows�

Propositions �� � and Theorem � lead to Algorithm ��

Algorithm � Approximation by piecewise linear concave functions�

Input� c�d� w� w��� �� f�x� � �
p
x and a routine that optimizes a linear function over the set X �

f�� �gn�
Output� A solution xH � X for which G� � c�xH�f�d

�xH� � G���� where G� � minx�X c�x�f�d�x��

Algorithm�


� �Initialization� Let � � ���� Let w� � w� Let

k �

�
���
s
�
p
w

��
�
�

�
�
s
�
p
w

��
�
�

�

�
��� � O

�
�
s
�

�
�ndmax�

�

�

�
A

�



where dmax � maxj dj and for i � �� � � � � k let

wi � ��

��
��



i�

sp
w

��
�
�

�

��

� �

�

��
�

�

�

�� For i � �� � � � � k solve the problem

Zi � min
x�X



c�

�p
wi �

p
wi��

d

��
x� ����

Let xi be an optimal solution to Problem �
���

�� Output G�
H � Zi� � mini�������k Zi and xH � xi� �

Theorem 
 Algorithm 
 
nds a solution xH � X for which G� � c�xH � f�d�xH� � G� � ��

Proof � Using Proposition � we 
nd a piecewise linear concave function g�w� that approximates within

a given tolerance � � � the function �
p
w� From Proposition � and since the gradient of the ith segment

of the function g�w� for w � �wi��� wi� is

�i � �

p
wi � p

wi��
wi � wi��

�
�p

wi �
p
wi��

�

we solve the Problems for i � �� � � � � k

Zi � min
x�X



c �

�p
wi �

p
wi��

d

��
x

Taking G�
H � mini Zi and using Theorem � it follows that Algorithm � produces a solution within ��

Although the number of subproblems solved in Algorithm � is not polynomial with respect to the

bit size of the input data� the computation involved is reasonable from a practical point of view� For

example� in Table � we report the number of subproblems we need to solve for � � �� as a function of

� and d�e �
Pn

j�� dj �

� A Frank�Wolfe Type Algorithm

A natural method to solve Problem ��� is to apply a Frank�Wolfe type algorithm� that is to successively

linearize the function f����

Algorithm � The Frank�Wolfe type algorithm�

Input� c�d��� 	 � ���d�e�� ������ f�w�� ��w� and a routine that optimizes a linear function over the

set X � f�� �gn�
Output� A locally optimal solution to Problem �	��

Algorithm�

��



� d�e k

���� �� ��

���� ��� ��

���� ���� 
�

���� ����� ���

����� �� 
�

����� ��� ���

����� ���� ���

����� ����� ��	

Table �� Number of subproblems� k as a function of the desired precision �� size of the problem d�e and

� � ��


� �Initialization� k � ��x� �� argminy�X�c� 	d��y

�� Until d�xk�� � d�xk� xk�� �� argminy�X�c� ��d�xk�d��y�

�� Output xk���

We next show that Algorithm � converges to a locally optimal solution�

Theorem � Let x� y and z� be optimal solutions to the following problems�

x � arg min
u�X

�c� 	d��u� ��	�

y � arg min
u�X

�c� ��d�x�d��u ��
�

z� � arg min
u�X

�c� �d��u� ����

for some � strictly between 	 and ��d�x��

�a� �Improvement� c�y � f�d�y� � c�x� f�d�x��

�b� �Monotonicity� If 	 � ��d�x�� then ��d�x� � ��d�y�� Likewise� if 	 
 ��d�x�� then ��d�x� � ��d�y��

Hence� the sequence 	k � ��d�xk� for which xk � argminx�X�c���d�xk���d��x is either non�decreasing

or non�increasing�

�c� �Local optimality�

c�y � f�d�y� � c�z� � f�d�z���

��



for all � strictly between 	 and ��d�x�� Moreover� if d�y � d�x� then the solution y is locally optimal�

that is

y � arg min
u�X

�c� ��d�y�d��u

and

c�y � f�d�y� � c�z� � f�d�z���

for all � between 	 and ��d�y��

Proof � �a� We have

c�x� f�d�x� � �c� ��d�x�d��x� ��d�x�d�x� f�d�x�

� c�y � ��d�x�d�y � ��d�x�d�x� f�d�x�

� c�y � f�d�y� � f��d�x��d�y � d�x�� �f�d�y�� f�d�x�g
� c�y � f�d�y��

since ���� is a subgradient�
�b� From the optimality of x and y� we have

c�y � ��d�x�d�y � c�x� ��d�x�d�x

��c�y � 	d�y� � ��c�x� 	d�x��

Adding the two inequalities we obtain

�d�x� d�y����d�x�� 	� � ��

Therefore� if ��d�x� � 	 then d�y � d�x and since f�w� is a concave function� i�e�� ��w� is non�increasing�

��d�y� � ��d�x�� Likewise� if ��d�x� 
 	 then ��d�y� � ��d�x�� Hence� the sequence 	k � ��d�xk� is

monotone�

�c� We 
rst show that d�z� is in the convex hull of d�x and d�y� From the optimality of x� y� and z�

we obtain

c�x� 	d�x � c�z� � 	d�z�

c�x� �d�x � c�z� � �d�z�

c�y � ��d�x�d�y � c�z� � ��d�x�d�z�

c�y � �d�y � c�z� � �d�z�

��



From the 
rst two inequalities we obtain

�d�z� � d�x��	 � �� � ��

and from the last two we have

�d�z� � d�y����d�x�� �� � ��

As � is between 	 and ��d�x�� then if 	 
 � 
 ��d�x�� we conclude since ���� is non�increasing that
d�y � d�z� � d�x� Likewise� if ��d�x� 
 � 
 	� we have d�x � d�z� � d�y�� i�e�� d�z� is in the convex

hull of d�x and d�y� Next� we have

c�y � f�d�y� � �c� ��d�x�d��y � ��d�x�d�y � f�d�y�

� �c� ��d�x�d��z� � ��d�x�d�y � f�d�y�

� c�z� � f�d�z�� � ff�d�y�� f�d�z��� ��d�x��d�y � d�z��g
� c�z� � f�d�z�� � h�d�z��

� c�z� � f�d�z��� ����

where inequality ���� follows from observing that the function h�
� � f�d�y�� f�
�� ��d�x��d�y�
�

is a convex function with h�d�y� � � and h�d�x� � �� Since d�z� is in the convex hull of d
�x and d�y�

by convexity� h�d�z�� � �h�d�y� � ��� ��h�d�x� � �� for some � � ��� ���
Given a feasible solution� x� Theorem ��a� implies that we may improve the objective by solving a

sequence of problems using Algorithm �� Note that at each iteration� we are optimizing a linear function

over X � Theorem ��b� implies that the sequence of 	k � ��d�xk� is monotone and since it is bounded

it converges� Since X is 
nite� then the algorithm converges in a 
nite number of steps� Theorem ��c�

implies that at termination �recall that the termination condition is d�y � d�x� Algorithm � 
nds a

locally optimal solution�

Suppose 	 � ��e�d� and fx�� � � � �xkg be the sequence of solutions of Algorithm �� From Theorem

��b�� we have

	 � ��e�d� � 	� � ��d�x�� � � � � � 	k � ��d�xk��

When Algorithm � terminates at the solution xk� then from Theorem ��c��

c�xk � f�d�xk� � c�z� � f�d�z��� ����

where z� is de
ned in Eq� ���� for all � � ���e�d�� ��d�xk��� Likewise� if we apply Algorithm � starting

at �	 � ����� and let fy�� � � � �ylg be the sequence of solutions of Algorithm �� then we have

�	 � ���� � �	� � ��d�y�� � � � �� �	l � ��d�yl��

��



and

c�yl � f�d�yl� � c�z� � f�d�z�� ����

for all � � ���d�yl�� ������ If ��d�xk� � ��d�yl�� we have ��d�xk� � ���d�yl�� ����� and ��d�yl� �
���e�d�� ��d�xk��� Hence� following from the inequalities ���� and ����� we conclude that

c�yl � f�d�yl� � c�xk � f�d�xk�� � c�z� � f�d�z��

for all � � ���e�d�� ��d�xk�� 	 ���d�yl�� ����� � ���e�d�� ������ Therefore� both yl and xk are globally

optimal solutions� However� if ��d�yl� � ��d�xk�� we are assured that the global optimal solution is xk�

yl or in fx � x � argminu�X�c � �d��u� � � ���d�xk�� ��d�yl��g� We next determine an error bound
between the optimal objective and the objective of the best local solution� which is either xk or yl�

Theorem � �a�Let W � �w�w�� ��w� � ��w�� X � � X 
 fx � d�x � Wg� and

x� � arg min
y�X �

�c� ��w�d��y� ����

x� � arg min
y�X �

�c� ��w�d��y� ����

Then

G� � min fc�x� � f�d�x��� c
�x� � f�d�x��g � G� � ��

where

G� � min
y�X �

c�y � f�d�y�� ����

� � ��w��w� � w� � f�w�� f�w���

and

w� �
f�w�� f�w� � ��w�w � ��w�w

��w�� ��w�
�

�b� Suppose the feasible solutions x� and x� satisfy

x� � arg min
y�X

�c� ��d�x��d�
�y� ����

x� � arg min
y�X

�c� ��d�x��d�
�y� ��	�

such that ��w� � ��w�� with w � d�x�� w � d�x� and there exists an optimal solution x� �

argminy�X�c� �d��y for some � � ���w�� ��w��� then

G� � min fc�x� � f�d�x��� c
�x� � f�d�x��g � G� � �� ��
�

where G� � c�x� � f�d�x���

��
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Figure �� Illustration of the maximum gap between the functions f�w� and g�w��

Proof � �a� Let g�w�� w � W be a piecewise concave function comprising of two line segments through

�w� f�w��� �w� f�w�� with respective subgradients ��w� and ��w�� Clearly f�w� � g�w� for w � W � and

hence� we have �� � f�w�� g�w� � �� where � � maxw�W �g�w�� f�w�� � g�w��� f�w��� noting that

the maximum di�erence occurs at the intersection of the line segments �see Figure ��� Therefore�

g�w�� � ��w��w� � w� � f�w� � ��w��w� � w� � f�w��

Solving for w�� we have

w� �
f�w�� f�w� � ��w�w � ��w�w

��w�� ��w�
�

Applying Proposition � with X � instead of X and k � �� we obtain

min
y�X �

c�y � g�d�y� � min fc�x� � g�d�x��� c�x� � g�d�x��g �

Finally� from Theorem �� we have

G�� � min fc�x� � f�d�x��� c
�x� � f�d�x��g � G�� � ��

�b� Under the stated conditions� observe that the optimal solutions of the problems ���� and ��	� are

respectively the same as the optimal solutions of the problems ���� and ����� Let � � ���d�x��� ��d�x���

��



such that x� � argminy�X�c� �d��y� We establish that

c�x� � �d�x� � c�x� � �d�x�

c�x� � ��d�x��d
�x� � c�x� � ��d�x��d

�x�

c�x� � �d�x� � c�x� � �d�x�

c�x� � ��d�x��d
�x� � c�x� � ��d�x��d

�x��

Since ��d�x�� 
 � 
 ��d�x��� it follows that d
�x� � �d�x��d�x�� and hence� G� � G� and the bounds

of ���� follows from part �a��

Remark� If ��d�yl� � ��d�xk�� Theorem ��b� provides a guarantee on the quality of the best solution

of the two locally optimal solution xk and yl relative to the global optimum� Moreover� we can improve

the error bound by partitioning the interval ���w�� ��w��� with w � d�yl� w � d�xk into two subintervals�

���w�� ���w� � ��w����� and ����w� � ��w����� ��w�� and applying Algorithm � in the intervals� Using

Theorem ��a�� we can obtain improved bounds� Continuing this way� we can 
nd the globally optimal

solution�

� Generalized Bertsimas and Sim Robust Formulation

Bertsimas and Sim ��� propose the following model for robust discrete optimization�

Z� � min
x�X

c�x� max
fS�ftgj S�J�jSj�b�c�t�JnSg

��
�
X
j�S

djxj � ��� b�c�dtxt
��
�

� min
x�X

c�x� max
fz�e�

z�����z�eg

��
�
X
j�J

djxjzj

��
�

����

They show�

Theorem 
 �Bertsimas and Sim ���� Let x� be an optimal solution of Problem ����� If each �cj is a

random variable� independently and symmetrically distributed in �cj � dj � cj � dj �� then

Pr

�
�X

j

�cjx
�
j � Z�

�
A � B�r��� �

�

�r

��
���� ��

nX
l�b�c



r

l

�
� �

rX
l�b�c��



r

l

���
� � ����

where � � �i�r
� and � � � � b�c� Moreover� for � �  

p
r�

lim
r�	B�r��� � �� !� �� ����

where !� � is the cumulative distribution function of a standard normal�

��



Intuitively� if we select � �  
p
r� then the probability that the robust solution exceeds Z� is

approximately � � !� �� Since in this case feasible solutions are restricted to binary values� we can

achieve a less conservative solution by replacing r by
P

j�J x�j � e�
J
x� i�e�� the parameter � in the

robust problem ���� depends on e�
J
x� We write � � f�e�

J
x�� where f��� is a concave function� Thus�

we propose to solve the following problem�

Z� � min
x�X

c�x� max
fz�e�

z�f	e�

J
x
���z�eg

��
�
X
j�J

djxjzj

��
� � ����

Without loss of generality� we assume that d� � d� � � � � � dr� We de
ne dr�� � � and let

Sl � f�� � � � � lg� For notational convenience� we also de
ne d� � � and S� � J �

Theorem � Let ��w� be a subgradient of the concave function f��� evaluated at w� Problem ����

satis
es Z� � min
	l�k
�l�k�J�f�g

Zlk� where

Zlk � min
x�X

c�x�
X
j�Sl

�dj � dl�xj � ��k�dle
�

J
x� dl�f�k�� k��k��� ����

Proof � By strong duality of the inner maximization function with respect to z� Problem ���� is

equivalent to solving the following problem�

minimize c�x�
X
j�J

pj � f�e�
J
x�	

subject to pj � djxj � 	 �j � J

pj � � �j � J

x � X

	 � ��

����

We eliminate the variables pj and express Problem ���� as follows�

minimize c�x�
X
j�J

maxfdjxj � 	� �g� f�e�
J
x�	

subject to x � X

	 � ��

����

Since x � f�� �gn� we observe that

maxfdjxj � 	� �g �

���
��

dj � 	 if xj � � and dj � 	

� if xj � � or dj 
 	�
����

�	



By restricting the interval of 	 can vary we obtain that Z� � min�
�minl�������r Zl�	� where Zl�	��

l � �� � � � � r� is de
ned for 	 � �dl� dl��� is

Zl�	� � min
x�X

c�x�
X
j�Sl

�dj � 	�xj � f�e�
J
x�	 ��	�

and for 	 � �d�����
Z��	� � min

x�X
c�x� f�e�

J
x�	� ��
�

Since each function Zl�	� is optimized over the interval �dl� dl���� the optimal solution is realized in

either dl or dl��� Hence� we can restrict 	 from the set fd�� � � � � dr� �g and establish that

Z� � min
l�J�f�g

c�x�
X
j�Sl

�dj � dl�xj � f�e�
J
x�dl� ����

Since e�
J
x � f�� �� � � � � rg� we apply Theorem � to obtain the subproblem decomposition of �����

Theorem 
 suggests that the robust problem remains polynomially solvable if the nominal problem

is polynomially solvable� but at the expense of higher computational complexity� We next explore faster

algorithms that are only guarantee local optimality� In this spirit and analogously to Theorem �� we

provide a necessary condition for optimality� which can be exploited in a local search algorithm�

Theorem � An optimal solution� x to the Problem ���� is also an optimal solution to the following

problem�

minimize c�y �
X
j�Sl�

�dj � dl��yj � ��e�
J
x�dl�e

�

J
y

subject to y � X�

����

where l� � arg min
l�J�f�g

X
j�Sl

�dj � dl�xj � f�e�
J
x�dl�

Proof � Suppose x is an optimal solution for Problem ���� but not for Problem ����� Let y be the

optimal solution to Problem ����� Therefore�

c�x� max
fz�e�

z�f	e�

J
x
���z�eg

��
�
X
j�J

djxjzj

��
�

� min
l�J�f�g

c�x�
X
j�Sl

�dj � dl�xj � f�e�
J
x�dl ����

� c�x�
X
j�Sl�

�dj � dl��xj � f�e�
J
x�dl�

� c�x�
X
j�Sl�

�dj � dl��xj � ��e�
J
x�dl�e�Jx� ��e�

J
x�dl�e�Jx� f�e�

J
x�dl�

�




� c�y �
X
j�Sl�

�dj � dl��yj � ��e�
J
x�dl�e�Jy � ��e�

J
x�dl�e�Jx� f�e�

J
x�dl�

� c�y �
X
j�Sl�

�dj � dl��yj � f�e�
J
y�dl� �

�
��e�

J
x��e�

J
y � e�

J
x�� �f�e�

J
y�� f�e�

J
x�
��
dl�

� c�y �
X
j�Sl�

�dj � dl��yj � f�e�
J
y�dl�

� min
l�J�f�g

c�y �
X
j�Sl

�dj � dl�yj � f�e�
J
y�dl

� c�y � max
fz�e�

z�f	e�

J
y
���z�eg

��
�
X
j�J

djyjzj

��
� ����

where the Eqs� ���� and ���� follows from Eq� ����� This contradicts that x is optimal�

� Experimental Results

In this section� we provide experimental evidence on the e�ectiveness of Algorithm �� We apply Algo�

rithm � as follows� We start with two initial solutions x� and x�� Starting with x� �x�� Algorithm

� 
nds a locally optimal solution y� �y��� If y� � y�� by Theorem �� the optimum solution is found�

Otherwise� we report the optimality gap � derived from Theorem �� If we want to 
nd the optimal

solution� we partition into smaller search regions �see Remark after Theorem �� using Theorem � and

repeatedly apply Algorithm � until all regions are covered�

We apply the proposed approach to the binary knapsack and the uniform matroid problems�

��� The Robust Knapsack Problem

The binary knapsack problem is�

maximize
X
i�N

�cixi

subject to
X
i�N

wixi � b

x � f�� �gn�
We assume that the costs �ci are random variables that are independently distributed with mean ci and

variance di � ��i � Under the ellipsoidal uncertainty set� the robust model is�

maximize
X
i�N

cixi � �
p
d�x

subject to
X
i�N

wixi � b

x � f�� �gn�

��



The instance of the robust knapsack problem is generated randomly with jN j � ��� and capacity

limit� b equals ��� ���� The nominal weight wi is randomly chosen from the set f���� � � � � ����g� the cost
ci is randomly chosen from the set f��� ���� � � � � ��� ���g� and the standard deviation �j is dependent on
cj such that �j � �jcj � where �j is uniformly distributed in ��� ��� We vary the parameter � from � to

� and report in Table � the best attainable objective� ZH � the number of instance of nominal problem

solved� as well as the optimality gap ��

� ZH Iterations � ��ZH

��� ���������� � � �

��� ������
�
� � � �

��� ���	������ � � �

��� ������	�	� � ������ �������� ����

���� ������	��� � � �

��� ��
�����	
 � � �

��� ���������� � ������ �������� ����

��� ���������� 	 � �

��� ���	�	���� 
 � �

Table �� Performance of Algorithm � on the robust knapsack problem�

It is surprising that in all of the instances� we can obtain the optimal solution of the robust problem

using a small number of iterations� Even for the cases� � � �� �� where the Algorithm � terminates with

more than one local minimum solutions� the resulting optimality gap is very small� which is usually

acceptable in practical settings�

��� The Robust Minimum Cost over a Uniform Matroid

We consider the problem of minimizing the total cost of selecting k items out of a set of n items that

can be expressed as the following integer programming problem�

minimize
X
i�N

�cixi

subject to
X
i�N

xi � k

x � f�� �gn�

����

��



In this problem� the cost components are subjected to uncertainty� If the model is deterministic� we

can easily solve the problem in O�n logn� by sorting the costs in ascending order and choosing the 
rst

k items� In the robust framework under the ellipsoidal uncertainty set� we solve the following problem�

minimize c�x��
p
d�x

subject to
X
i�N

xi � k

x � f�� �gn�

����

Since the underlying set is a matroid� it is well known that Problem ���� can be solved in strongly

polynomial time using parametric programming� Instead� we apply Algorithm � and observe the number

of iterations needed before converging to a local minimum solution� Setting jkj � jN j��� cj and �j �p
dj being uniformly distributed in ������ ������ and ����� ����� respectively� we study the convergence

properties as we vary jN j from ��� to ������ and � from � to �� For a given jN j and �� we generate
c and d randomly and solve ��� instances of the problem� Aggregating the results from solving the

��� instances� we report in Table � the average number of iterations before 
nding a local solution� the

maximum relative optimality gap� ��ZH and the percentage of the local minimum solutions that are

global� i�e�� � � ��

The overall performance of Algorithm � is surprisingly good� It also suggests scalability� as the

number of iterations is marginally a�ected by an increase in jN j� In fact� in most of the problems
tested� we obtain the optimal solution by solving less than �� iterations of the nominal problem� Even

in cases when local solutions are found� the corresponding optimality gap is negligible� In summary�

Algorithm � seems practically promising�

	 Conclusions

A message of the present paper is that the complexity of robust discrete optimization is a�ected by the

choice of the uncertainty set� For ellipsoidal uncertainty sets� we have shown an increase in complexity for

the robust counterpart of a discrete optimization problem for general covariance matrices � �correlated

data�� a preservation of complexity when � � �I �uncorrelated and identically distributed data�� while

we have left open the complexity when the matrix � is diagonal �uncorrelated data�� In the latter case�

we proposed two algorithms that in computational experiments have excellent empirical performance�

��
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Table �� Performance of Algorithm � on the robust minimum cost problem over a uniform matroid�
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