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Abstract

We address the complexity and practically efficient methods for robust discrete optimization
under ellipsoidal uncertainty sets. Specifically, we show that the robust counterpart of a discrete
optimization problem with correlated objective function data is N P-hard even though the nominal
problem is polynomially solvable. For uncorrelated and identically distributed data, however, we
show that the robust problem retains the complexity of the nominal problem. For uncorrelated, but
not identically distributed data we propose an approximation method that solves the robust problem
within arbitrary accuracy. We also propose a Frank-Wolfe type algorithm for this case, which we prove
converges to a locally optimal solution, and in computational experiments is remarkably effective.
Finally, we propose a generalization of the robust discrete optimization framework we proposed earlier
that (a) allows the key parameter that controls the tradeoff between robustness and optimality to
depend on the solution and (b) results in increased flexibility and decreased conservatism, while

maintaining the complexity of the nominal problem.
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1 Introduction

Robust optimization as a method to address uncertainty in optimization problems has been in the
center of a lot of research activity. Ben-Tal and Nemirovski [1, 2, 3] and El-Ghaoui et al. [7, 8] propose
efficient algorithms to solve certain classes of convex optimization problems under data uncertainty that
is described by ellipsoidal sets.

Kouvelis and Yu [15] propose a framework for robust discrete optimization, which seeks to find a
solution that minimizes the worst case performance under a set of scenarios for the data. Unfortunately,
under their approach, the robust counterpart of a polynomially solvable discrete optimization problem
can be N P-hard. Bertsimas and Sim [5, 6] propose an approach in solving robust discrete optimization
problems that has the flexibility of adjusting the level of conservativeness of the solution while preserving
the computational complexity of the nominal problem. This is attractive as it shows that adding
robustness does not come at the price of a change in computational complexity. Ishii et. al. [12] consider
solving a stochastic minimum spanning tree problem with costs that are independently and normally
distributed leading to a similar framework as robust optimization with an ellipsoidal uncertainty set.
However, to the best of our knowledge, there has not been any work or complexity results on robust
discrete optimization under ellipsoidal uncertainty sets.

It is thus natural to ask whether adding robustness in the cost function of a given discrete opti-
mization problem under an ellipsoidal uncertainty set leads to a change in computational complexity
and whether we can develop practically efficient methods to solve robust discrete optimization problems
under ellipsoidal uncertainty sets.

Our objective in this paper is to address these questions. Specifically our contributions include:

(a) Under a general ellipsoidal uncertainty set that models correlated data, we show that the robust
counterpart can be N P-hard even though the nominal problem is polynomially solvable in contrast

with the uncertainty sets proposed in Bertsimas and Sim [5, 6].

(b) Under an ellipsoidal uncertainty set with uncorrelated data, we show that the robust problem
can be reduced to solving a collection of nominal problems with different linear objectives. If the
distributions are identical, we show that we only require to solve r + 1 nominal problems, where r
is the number of uncertain cost components, that is in this case the computational complexity is
preserved. Under uncorrelated data, we propose an approximation method that solves the robust
problem within an additive €. The complexity of the method is O((ndmax)1/46_1/2)7 where dpax

is the largest number in the data describing the ellipsoidal set. We also propose a Frank-Wolfe



type algorithm for this case, which we prove converges to a locally optimal solution, and in com-
putational experiments is remarkably effective. We also link the robust problem with uncorrelated

data to classical problems in parametric discrete optimization.

(c) We propose a generalization of the robust discrete optimization framework in Bertsimas and Sim
[5] that allows the key parameter that controls the tradeoff between robustness and optimality to
depend on the solution. This generalization results in increased flexibility and decreased conser-

vatism, while maintaining the complexity of the nominal problem.

Structure of the paper. In Section 2, we formulate robust discrete optimization problems under
ellipsoidal uncertainty sets (correlated data) and show that the problem is N P-hard even for nominal
problems that are polynomially solvable. In Section 3, we present structural results and establish that
the robust problem under ball uncertainty (uncorrelated and identically distributed data) has the same
complexity as the nominal problem. In Sections 4 and 5, we propose approximation methods for the
robust problem under ellipsoidal uncertainty sets with uncorrelated but not identically distributed data.
In Section 6, we present the generalization of the robust discrete optimization framework in Bertsimas
and Sim [5]. In Section 7, we present some experimental findings relating to the computation speed and

the quality of robust solutions. The final section contains some concluding remarks.

2 Formulation of Robust Discrete Optimization Problems

A nominal discrete optimization problem is:

minimize ¢’z
(1)

subject to @ € X,

with X C {0,1}". We are interested in problems where each entry é¢;, j € N = {1,2,...,n} is uncertain
and described by an uncertainty set C'. Under the robust optimization paradigm, we solve
minimize max ¢é'x
ceC (2)
subject to @ € X.

Writing € = ¢ 4 3, where ¢ is the nominal value and the deviation § is restricted to the set D = C' — ¢,

Problem (2) becomes:

minimize 'z + £(x) )
3

subject to @ € X,



where £(2) = maxzcp 8. Special cases of Formulation (3) include:

(a) D={s: s; €[0,d;]}, leading to {(z) = d'=z.

(b) D= {s: HE_l/zSHQ < Q} that models ellipsoidal uncertainty sets proposed by Ben-Tal and Ne-
mirovski [1, 2, 3] and El-Ghaoui et al. [7, 8]. It easily follows that £(x) = Qv&'Sx, where X is the

covariance matrix of the random cost coefficients. For the special case that ¥ = diag(dy,...,d,),

i.e., the random cost coefficients are uncorrelated, we obtain that {(z) = Q4/3cn djac? = OWd'z.

() D={s:0<s; <d;Vj€J ey <I'} proposed in Bertsimas and Sim [6]. It follows that
in this case {(z) = max(g,gj=r,sc.s} 2 es d;j7;, where J is the set of random cost components.
Bertsimas and Sim [6] show that Problem (3) reduces to solving at most |J| + 1 nominal problems
for different cost vectors. In other words, the robust counterpart is polynomially solvable if the
nominal problem is polynomially solvable.

Under models (a) and (c), robustness preserves the computational complexity of the nominal prob-
lem. Our objective in this paper is to investigate the price (in increased complexity) of robustness under
ellipsoidal uncertainty sets (model (b)) and propose effective algorithmic methods to tackle models (b),
(c).

Our first result is unfortunately negative. Under ellipsoidal uncertainty sets with general covariance
matrices, the price of robustness is an increase in computational complexity. The robust counterpart

may become N P-hard even though the nominal problem is polynomially solvable.

Theorem 1 The robust problem (3) with {(x) = QvVa'Yx (Model (b)) is N P-hard, for the following
classes of polynomially solvable nominal problems: shortest path, minimum cost assignment, resource

scheduling, minimum spanning tree.
Proof : Kouvelis and Yu [15] prove that the problem

minimize max{c}z,c,z}
(4)
subject to @ € X,

is N P-hard for the polynomially solvable problems mentioned in the statement of the theorem. We

show a simple transformation of Problem (4) to Problem (3) with {(2) = Qv /Y as follows:

' ' ' ' ' ' ' '
cix+c,x cix —c,x cix+cox cix —c,x
max{ciz,chz} = max{ L 5 2 4 4 5 2= 1 5 e 5 2 }
' ' ' ' ' '
cilx +cox cilxex —cox cilxex —co,x
1 2 + max 1 2 - 1 2
2 2 2



/ /
cla: — cza:

2

' '
ciz + co
2
' '
ciz + co
2

1
+ 5\/:1:’(c1 —c2)(c1 — c2)'z.

The N P-hard Problem (4) is transformed to Problem (3) with {(z) = Qva'Yz, ¢ = (c1 + ¢2)/2,
Q=1/2 and ¥ = (¢1 — ¢2)(c1 — ¢2)’. Thus, Problem (3) with {(z) = Qva'Yx is N P-hard. |
We next would like to propose methods for model (b) with ¥ = diag(dy,...,d,). We are thus

naturally led to consider the problem

* : ! !
G _inelgl(cw—l—f(da:) (5)
with f(-) a concave function. In particular, f(z) = Q/2 models ellipsoidal uncertainty sets with

uncorrelated random cost coefficients (model (b)).

3 Structural Results

We first show that Problem (5) reduces to solving a number of nominal problems (1). Let W =
{d'z | © € {0,1}"} and n(w) be a subgradient of the concave function f(-) evaluated at w, that is,
flu) = f(w) < n(w)(u—w) Yu € R.If f(w) is a differentiable function and f/(0) = oo, we choose

Flw) it we wA{o),
1w =93 ke
-~ if w=0,
where dmin = ming;. 4,50y d;-
Theorem 2 Let
2(w) = miy (e + n(w)d)'e + f(w) — wn(w), (6

and w* = arg min,ew Z(w). Then, w* is an optimal solution to Problem (5) and G* = Z(w”).

Proof : We first show that G* > min,ew Z(w). Let * be an optimal solution to Problem (5) and
w* =d'z* € W. We have

G" = dav 4 f(d'z*) = 2" + [(w7) = (e+ n(w)d)'z* + f(w”) — win(w”)

> min(e+ n(w)d)s + f(u7) — w (e’ = Z(w) > min Z(w).



Conversely, for any w € W, let y,, be an optimal solution to Problem (6). We have

Z(w) = (e+n(w)d)'yw + f(w) — wy(w)
<Yu + f(d'yw) +1(w0)(d"yw — w) = (f(d'Yw) - f(w))

> yw+ f(d'yw) (M)
H ! ! _ *
> minc'z+ f(d'z) =G,

where inequality (7) for w € W\{0} follows, since n(w) is a subgradient. To see that inequality (7)

follows for w = 0 we argue as follows. Since f(v) is concave and v > duyin Vv € W\{0}, we have

J(dmin) > U_Tdmi“f(o) + d“:“f(v), Vv € W\{0}.
Rearranging, we have
f(v) ; f(0) < f(dmi;i; f(0) _ 0(0) Wo € WA{0),
leading to 7(0)(d"yw — 0) — (f(d"yw) — f(0)) > 0. Therefore G* = min,ew Z(w). |

Note that when d; = 02, then W = {0,0%...,n0%}, and thus [W| = n + 1, In this case, Problem
(5) reduces to solving n + 1 nominal problems (6), i.e., polynomial solvability is preserved. Specifically,
for the case of an ellipsoidal uncertainty set ¥ = o021, leading to &(z) = €, /32 O'2$? = Qove'z, we

derive explicitly the subproblems involved.

Proposition 1 Under an ellipsoidal uncertainty set with {(z) = Qove'z,

G*= min Z(w),

w=0,1,...,n

where 9 . 9
Mmingex (c—I—Q\;_e) x4+ UQ\/E ifw=1,...,n,
Z(w) = v (8)
mingex (c+ Qoe)'z if w=0.

Proof: With ¢(z) = Qove'z, we have f(w) = Qoy/w. Substituting n(w) = f/(w) = Qo /(2y/w), YV w €
HAL0} and 7(0) = (f(duin) — F(0))/dmin = £(1) — F(0) = 0 to Fa. (6) we obtain Eq. (5). .

An immediate corollary of Theorem 2 is to consider a parametric approach as follows:

Corollary 1 An optimal solution to Problem (5) coincides with one of the optimal solutions to the

parametric problem:

minimize (c + 6d)
(9)

subject to x € X,
Jor 6 € [n(e'd), n(0)].



This establishes a connection of Problem (5) with parametric discrete optimization (see Gusfield
[11], Hassin and Tamir [13]). It turns out that if X is a matroid, the minimal set of optimal solutions
to Problem (9) as @ varies is polynomial in size, see Eppstein [9] and Fern et. al. [10]. For optimization
over a matroid, the optimal solution depends on the ordering of the cost components. Since, as 8 varies,
it is easy to see that there are at most (;) + 1 different orderings, the corresponding robust problem is
also polynomially solvable.

For the case of shortest paths, Karp and Orlin [14] provide a polynomial time algorithm using the
parametric approach when all d;’s are equal. In contrast, the polynomial reduction in Proposition 1
applies to all discrete optimization problems.

More generally, |W| < dmax? With dyax = max; d;. If dpax < n® for some fixed «, then Problem
(5) reduces to solving n®(n + 1) nominal problems (6). However, when dpay is exponential in n, an
approach that enumerates all elements of W does not preserve polynomiality. For this reason, as well
as deriving more practical algorithms even in the case that |W] is polynomial in n we develop in the

next section new algorithms.

4 Approximation via Piecewise Linear Functions

In this section, we develop a method for solving Problem (5) that is based on approximating the function
f() with a piecewise linear concave function. We first show that if f(-) is a piecewise linear concave
function with a polynomial number of segments, we can also reduce Problem (5) to solving a polynomial

number of subproblems.

Proposition 2 If f(w),w € [0,€e'd] is a continuous piecewise linear concave function of k segments,
then

. . !
mnin (¢ + 7;d)'z, (10)

where 1; is the gradient of the jth linear piece of the function f(-).

Proof : The proof follows directly from Theorem 2 and the observations that if f(w),w € [0,e'd] is
a continuous piecewise linear concave function of k linear pieces, the set of subgradients of each of the
linear pieces constitutes the minimal set of subgradients for the function f. |

We next show that approximating the function f(-) with a piecewise linear concave function leads

to an approximate solution to Problem (5).



Theorem 3 For W = [w, @] such thatd'x € W Va € X, let g(w), w € W be a piecewise linear concave
function approximating the function f(w) such that —e; < f(w) — g(w) < €3 with €1,¢3 > 0. Let @y be

an optimal solution of the problem:

minimize 'z + g(d'z)
(11)

subject to x € X

and let Gy = 'zu + f(d'xu). Then,
G"<Gu <G +e+e.
Proof : We have that

* : ! !
G* = glel}l({cw—l—f(da:)}

< Gun=czy+ f(d'zn)
< dep+g(dzn) + e (12)
— 3 ! !
= min{c'z +g(d'z)} +e
. / !
< min{c'z + fld'z)} + e+ e (13)
= G+ +e,
where inequalities (12) and (13) follow from —¢; < f(w) — g(w) < €. |

We next apply the approximation idea to the case of ellipsoidal uncertainty sets. Specifically, we
approximate the function f(w) = Q/w in the domain [w,w] with a piecewise linear concave function

g(w) satisfying 0 < f(w) — g(w) < € using the least number of linear pieces.
Proposition 3 For e > 0, wg given, let ¢ = €¢/Q and for i =1,...,k let
2 2
2 . +\/Wo 1 1
;= 2 — - = . 14
w; = @ { (l + 2 + 4) 2} (14)

Let g(w) be a piecewise linear concave function on the domain w € [wo, w], with breakpoints (w, g(w)) €

{(w07 Q\/w_0)7 ceey (wk7 Q\/w_k)} Then, fOT all w € [w07 wk]

0 < Vw - g(w) < e



Proof : Since at the breakpoints w;, g(w;) = Q/w;, g(w) is a concave function with g(w) < Q/w, Yw €

[wo, wg]. For w € [w;_y, w;], we have

OV - glu) = - {@yam+ T ) )

w; — Wi

- 9{@‘M‘¢%}—w =it

The maximum value of Q\/w — g(w) is attained at vw* = (\/w; + /w;—1)/2. Therefore,

QVw — g(w)

IA

— Wi
Q4w .
Himt e mhﬁ 1}

(-
: Q{mm
=

where Eq. (15) follows by substituting Eq. (14). Since

max _{QVw —g(w)} =

welw;_1,w;]

the proposition follows. |

Propositions 2, 3 and Theorem 3 lead to Algorithm 1.

Algorithm 1 Approzimation by piecewise linear concave functions.

Input: ¢, d,w,w,Q ¢, f(x) = Q/x and a routine that optimizes a linear function over the set X C
{0,1}".

Output: A solution xy € X for which G* < 'zp+f(d'zn) < G*+¢, where G* = mingex 'z+ f(d'z).
Algorithm:

1. (Initialization) Let ¢ = €¢/S; Let wo = w; Let

SN

INTS

ot



where dmax = max; d; and fori=1,...,k let

2 2
B N
_¢2{2 (z—l— %—I—Z) —5} .

2. Fori=1,...,k solve the problem

Q /
Z_mln (C—I_\/w_rl- — ) . (16)

Let @; be an optimal solution to Problem (16).
3. Output Gy = Zp» = minj=; .1 Z; and Ty = T;x.
Theorem 4 Algorithm 1 finds a solution xy € X for which G* < 'zp+ f(d'zn) < G* +e.

Proof : Using Proposition 3 we find a piecewise linear concave function g(w) that approximates within
a given tolerance ¢ > 0 the function ©Qy/w. From Proposition 2 and since the gradient of the ith segment

of the function g(w) for w € [w;—_1,w;] is

we solve the Problems for i =1,..., k&

7
Q
Z_mln c+ ————
( \/wz‘l’\/ i—1 )

Taking Gf; = min; Z; and using Theorem 3 it follows that Algorithm 1 produces a solution within . H
Although the number of subproblems solved in Algorithm 1 is not polynomial with respect to the
bit size of the input data, the computation involved is reasonable from a practical point of view. For

example, in Table 1 we report the number of subproblems we need to solve for €2 = 4, as a function of

cand d'e =377, d;.

5 A Frank-Wolfe Type Algorithm

A natural method to solve Problem (5) is to apply a Frank-Wolfe type algorithm, that is to successively

linearize the function f(-).

Algorithm 2 The Frank-Wolfe type algorithm.

Input: ¢,d,Q, 0 € [n(d'e),n(0)], f(w), n(w) and a routine that optimizes a linear function over the
set X C {0,1}".

Output: A locally optimal solution to Problem (5).

Algorithm:

10



€ d'e k

0.01 10 25

0.01 100 45

0.01 | 1000 | 80

0.01 | 10000 | 121

0.001 10 80

0.001 | 100 | 141

0.001 | 1000 | 251

0.001 | 10000 | 447

Table 1: Number of subproblems, &k as a function of the desired precision e, size of the problem d’e and

Q=4.
1. (Initialization) k = 0; g := arg minyex (¢ + 6d)'y
2. Until d'zpqy1 = d'zy, gy = argmingex (¢ + n(d'zy)d)y.
3. Output Tp41.

We next show that Algorithm 2 converges to a locally optimal solution.

Theorem 5 Let x, y and z, be optimal solutions to the following problems:

x = arg meigl((c + 6d)'u, (17)
u

y = argmin(c+n(dz)d)'u (18)

zy = argmin(c+d)'u, (19)

for some n strictly between 6 and n(d'z).
(a) (Improvement) 'y + f(d'y) < 'z + f(d'z).
(b) (Monotonicity) If 6 > n(d'z), then n(d'z) > n(d'y). Likewise, if 0 < n(d'z), then n(d'z) < n(d'y).
Hence, the sequence 8, = n(d'zy) for which z = arg minge x (c+n(d'zr—1)d) 'z is either non-decreasing
or non-increasing.
(¢) (Local optimality)

yt fd'y) < &zt f(d'z),

11



for all n strictly between 6 and n(d'z). Moreover, if d'y = d'x, then the solution y is locally optimal,

that is
— H ! /
y = arg min (¢ +(d'y)d)'u
and
cy+ f(d'y) <z, + f(d'z,),

for all n between 6§ and n(d'y).

Proof : (a) We have
dz+ f(dz) = (c+n(dz)d)z—ndz)d'z+ f(d'z)
> dy+nde)dy—ndz)dz+ f(dz)
= dy+ f(d'y) + {n(d'z)(d'y - d'z) - (f(d'y) - f(d'z)}

> dy+ f(d'y),

since 7(-) is a subgradient.

(b) From the optimality of  and y, we have

c'y+n(d'z)d'y

IA

dx+n(dz)dz

—(dy+6dy) < —(dz+6dz).

Adding the two inequalities we obtain
@'z - d'y)(n(d'z) - 6) > 0.

Therefore, if n(d'z) > 6 then d'y < d'x and since f(w) is a concave function, i.e., n(w) is non-increasing,
n(d'y) > n(d'z). Likewise, if n(d'z) < 6 then n(d'y) < n(d’'z). Hence, the sequence 0 = n(d'zy) is
monotone.

(c) We first show that d’z, is in the convex hull of d’x and d'y. From the optimality of @, y, and z,

we obtain

de+bdx < dz,+60d'z,

de+ndze > dz,+nd'z,
cy+n(dez)dy < cz,+n(d'z)d 2,

dy+ndy > z,+nd'z,



From the first two inequalities we obtain
(d'z, —d'z)(0—n) >0,

and from the last two we have

(d’z, — d"y)(n(d'z) —n) > 0.
As 7 is between 6 and n(d'z), then if § < n < n(d'z), we conclude since 7(-) is non-increasing that
d'y <d'z, <d'z. Likewise, if n(d'z) < n < 0, we have d'z < d'z, < d'y., ie., d'z, is in the convex
hull of d’z and d'y. Next, we have

cy+ f(d'y) = (ctn(dz)d)y-n(dz)dy+ f(dy)
< (e+n(d'z)d)'z, — n(d'z)dy + f(d'y)
=z, + f(d'z) + {f(d'y) - [(d'z,) —n(d'z)(d"y —d'z,)}
= 'z, + f(d'z,;) + h(d'z,)
< ezt fld'zy), (20)

where inequality (20) follows from observing that the function h(a) = f(d'y) — f(a) — n(d'z)(d'y — a)
is a convex function with h(d'y) = 0 and h(d’'z) < 0. Since d'z, is in the convex hull of d’z and d'y,
by convexity, h(d'z,) < ph(d'y) + (1 — p)h(d'z) <0, for some p € [0, 1]. |

Given a feasible solution, @, Theorem 5(a) implies that we may improve the objective by solving a
sequence of problems using Algorithm 2. Note that at each iteration, we are optimizing a linear function
over X. Theorem 5(b) implies that the sequence of 6 = n(d'zy) is monotone and since it is bounded
it converges. Since X is finite, then the algorithm converges in a finite number of steps. Theorem 5(c)
implies that at termination (recall that the termination condition is d'y = d'z) Algorithm 2 finds a
locally optimal solution.

Suppose § = n(e’'d) and {z1,...,x} be the sequence of solutions of Algorithm 2. From Theorem
5(b), we have

0 =n(e'd) <0 =n(d'z) <... <0 =n(dezy).

When Algorithm 2 terminates at the solution x, then from Theorem 5(c),
e+ f(d'zy) <z, + f(d'z,), (21)

where z,, is defined in Eq. (19) for all € [n(e’d), n(d'zy)]. Likewise, if we apply Algorithm 2 starting
at § = n(0), and let {yy,...,y} be the sequence of solutions of Algorithm 2, then we have

6 = n(0) > 6, = n(dy) >...> 6, = n(d'yr),

13



and

cyi+ f(d'y) <z + f(d'zy) (22)
for all 1 € [n(dsn), ). 1 ydex) > n(dm), we have n(d'ex) € [n(dm), n(0)] and n(d's) €
[n(e'd),n(d'zy)]. Hence, following from the inequalities (21) and (22), we conclude that

cyi+ f(d'y) = g + [(d'zyy) < 'z, + [(d'z)

for all n € [n(e'd), n(d'zr)] U [n(d"y1), n(0)] = [n(e’d),n(0)]. Therefore, both y; and @y, are globally
optimal solutions. However, if n(d'y;) > n(d'xi), we are assured that the global optimal solution is g,
yrorin {x: x = argmingex(c+ nd)'u, n € (n(d'xy), n(d"y;))}. We next determine an error bound

between the optimal objective and the objective of the best local solution, which is either xy or y;.

Theorem 6 (a)Let W = [w, @], n(w) > n(w), X' =X N{z:d'z ¢ W}, and

x1 = arg min (¢ 4+ n(w)d)'y, (23)
yex'

Ty = arg yrréi)r(ll(c + n(w)d)'y. (24)

Then

G' <min{c'zy + f(d'z1), 22+ f(d'z2)} < G+,

where
G'= min ¢ d’ 25
;rg)r(l,chrf( ), (25)

e =n(w)(w” —w) + f(w) - f(w),
and

. f@) = flw)+n(ww - n(m)m‘

wr =

n(w) — n(w)
(b) Suppose the feasible solutions 1 and x4 satisfy

— ' d'z,)d) 26
1 = arg in (e +n(d'z1)d)'y, (26)

= i d'z2)d)'y, 27

@z = arg min (¢ + 1(d'zz)d)'y (27)

such that n(w) > n(@), with w = d'zy, W = d'xe and there exists an optimal solution x* =

argminge x (¢ + nd)'y for some n € (n(w), n(w)), then
G <min{c'zy + f(d'z1), 2z + f(d'z2)} <G+ ¢, (28)
where G* = c'z* + f(d'z*).

14
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Figure 1: Illustration of the maximum gap between the functions f(w) and g(w).

Proof: (a) Let g(w), w € W be a piecewise concave function comprising of two line segments through
(w, f(w)), (w, f(W)) with respective subgradients n(w) and 7(@). Clearly f(w) < g(w) for w € W, and
hence, we have —¢ < f(w) — g(w) <0, where ¢ = max,,ew (9(w) — f(w)) = g(w*) — f(w*), noting that

the maximum difference occurs at the intersection of the line segments (see Figure 1). Therefore,
g9(w”) = n(w)(w” —w) + f(w) = n(w)(w” — @) + f(w).

Solving for w*, we have

o = @) = f(w) + n(w)w - g(@)w
n(w) — (W)

Applying Proposition 2 with X’ instead of X and k& = 2, we obtain

mi)? dy+g(dy)=min{cz; +g(d'z1),cz2 + g(d'z2)}.
yeX/
Finally, from Theorem 3, we have

G™ <min{c'z; + f(d'z1), 2+ f(d'z2)} <G + <.

(b) Under the stated conditions, observe that the optimal solutions of the problems (26) and (27) are

respectively the same as the optimal solutions of the problems (23) and (24). Let n € (n(d'z2), n(d'z1))
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such that * = argminyex (¢ + nd)'y. We establish that

cz* + nd'z*

IA

cxy +nd'x,

dz* +n(dzy)d'z*

v

dzy+n(dz)d z

cz* + nd'z*

IA

cxy+nd'xs

dz* 4+ n(d'ze)d x>

v

dxy 4 n(dzz)d xzs.

Since n(d'z2) < n < n(d'zy), it follows that d'x* € [d'zy,d @3] and hence, G* = G’ and the bounds
of (25) follows from part (a). |
Remark: If n(d'y;) > n(d'zy), Theorem 6(b) provides a guarantee on the quality of the best solution
of the two locally optimal solution @y and y; relative to the global optimum. Moreover, we can improve
the error bound by partitioning the interval [(w@), n(w)], with w = d'y;, W = d’xy, into two subintervals,
(n(@), (n(w) + n(w))/2] and [(n(@) + n(w))/2,n(w)] and applying Algorithm 2 in the intervals. Using
Theorem 6(a), we can obtain improved bounds. Continuing this way, we can find the globally optimal

solution.

6 Generalized Bertsimas and Sim Robust Formulation

Bertsimas and Sim [6] propose the following model for robust discrete optimization:

Z* = mincx+ max {
TEX {Su{t}| SCJ,|S|=|T] teJ\S}

> djrj+ (0~ LFJ)dtﬂft}

JjE€S

: '
= mincx+ max E d:x:z;
reX { 7 ]}

{z:€'z2<T,0<z<e} ied
They show:

Theorem 7 (Bertsimas and Sim [6]) Let ®* be an optimal solution of Problem (29). If each ¢; is a

random variable, independently and symmetrically distributed in [c; — d;, c; + d;], then

Pr (Zéjx;>2*) gB(r,F):;—r{(l—,u) Zn: (;)-I—,u Zr: (;)}7 (30)

I=|v] I=|v]+1
where v = % and pp = v — |v|. Moreover, for T' = A\/r,
li_>m B(r,I')=1—-®(A), (31)

where ®(A) is the cumulative distribution function of a standard normal.
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Intuitively, if we select I' = Ay/r, then the probability that the robust solution exceeds Z* is
approximately 1 — ®(A). Since in this case feasible solutions are restricted to binary values, we can
achieve a less conservative solution by replacing r by > ey} = e’jx, i.e., the parameter I' in the
robust problem (29) depends on e’;&z. We write I' = f(e/;2), where f(-) is a concave function. Thus,
we propose to solve the following problem:

7% = minc'z + max {Zdjsz]} . (32)

TreX {z€'z<f(e;w),0<z<e} ied

Without loss of generality, we assume that dy > dy > ... > d,. We define d,.1; = 0 and let

Sy ={1,...,l}. For notational convenience, we also define dy = 0 and Sy = J.

Theorem 8 Let n(w) be a subgradient of the concave function f(-) evaluated at w. Problem (32)

satisfies Z* = min Zi, where
(1,k):l, ke Ju{0}

Zie = min e’z + > (dj = di)a; + (k) dielyz + di(f(k) — ki(k)). (33)
JES

Proof : By strong duality of the inner maximization function with respect to z, Problem (32) is

equivalent to solving the following problem:

minimize 'z + ij + f(ejx)6

jeJ
subject to p; > d;z; — 0 VielJd
p; >0 vied (34)
reX
6 >0,
We eliminate the variables p; and express Problem (34) as follows:
minimize ¢’z 4+ Z max{d;z; — 0,0} + f(e’jx)b
jeJ
subject to z € X (35)
6> 0.
Since @ € {0,1}", we observe that
d;—0 ifz;=1and d; >0
max{d;z; — 0,0} = (36)

0 ifz; =0o0rd; <@.
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By restricting the interval of  can vary we obtain that Z* = mingso minj—,..., Z;(f) where Z;(6),

l=1,...,r, is defined for 8 € [d;, d;1] is

Z(0) = migl{ dx+ Y (dj — 0)z;+ f(ez)b (37)
re J€S
and for 0 € [dy, 00):
Zo(6) = glelgl( dx+ f(ejz)d. (38)

Since each function Z;(#) is optimized over the interval [d;, d;4+1], the optimal solution is realized in

either d; or d;yy. Hence, we can restrict 6 from the set {dy,...,d,.,0} and establish that

7 = ler}lLiJI{lO} cx+ 4 (d]‘ — dl)xj + f(e'Ja:)dl (39)
JES
Since e’;x € {0,1,...,7}, we apply Theorem 2 to obtain the subproblem decomposition of (33). |

Theorem 8 suggests that the robust problem remains polynomially solvable if the nominal problem
is polynomially solvable, but at the expense of higher computational complexity. We next explore faster
algorithms that are only guarantee local optimality. In this spirit and analogously to Theorem 5, we

provide a necessary condition for optimality, which can be exploited in a local search algorithm.

Theorem 9 An optimal solution, x to the Problem (32) is also an optimal solution to the following

problem:

minimize ¢’y + Y (d; — di=)y; + n(e’jz)dpelsy
JES* (40)
subject to y € X,

here [* = i dj — dp)z; ra)d.
where argle%l{lo}je&( i —drj+ flejz)d

Proof : Suppose x is an optimal solution for Problem (32) but not for Problem (40). Let y be the

optimal solution to Problem (40). Therefore,

{z:e'z<f(e]y®),0<z<e}

cxr+ max {Zdjwjz]}

jed
= in ¢ d; —dj)z; ha)d 41
in €' +JESZ( i —die+ flejz)ds (41)
= cz+ Z (d; —dp)x; + f(e5a)dp
JES*
= cdz+ Z (d; —dp)x; + n(ejx)dpejz — n(eyz)dpe;x + feljx)dp
JES*
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> dy+ Y (dj - dp)y; +nlea)direy — n(ea)dinela + feha)d
JESp*

= dy+ > (dj —dpw)y; + f(eyy)di- + (n(eyz)(e'yy — ehyz) — (f(eyy) — fleh))) di-
JES*

cy+ Z (dj — di)y; + f(ey)d
JES*

. ’ d: — d)y. L and
EEAPT

= c'y—|— max {Zdjyjz]} (42)

{z:e'z<f(e]yy).0<z<e} | iy

v

v

where the Eqs. (41) and (42) follows from Eq. (39). This contradicts that @ is optimal. |

7 Experimental Results

In this section, we provide experimental evidence on the effectiveness of Algorithm 2. We apply Algo-
rithm 2 as follows. We start with two initial solutions @y and x5. Starting with x; (22) Algorithm
2 finds a locally optimal solution y1 (y2). If y1 = y2, by Theorem 5, the optimum solution is found.
Otherwise, we report the optimality gap ¢ derived from Theorem 6. If we want to find the optimal
solution, we partition into smaller search regions (see Remark after Theorem 6) using Theorem 4 and
repeatedly apply Algorithm 2 until all regions are covered.

We apply the proposed approach to the binary knapsack and the uniform matroid problems.

7.1 The Robust Knapsack Problem

The binary knapsack problem is:

maximize g Ci %y

1EN

subject to Z wiz; < b
1EN
xz € {0,1}".

We assume that the costs ¢; are random variables that are independently distributed with mean ¢; and

variance d; = 0. Under the ellipsoidal uncertainty set, the robust model is:

maximize Z iz + WvVd'z

1EN

subject to Z wiz; < b
1EN
x € {0,1}"
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The instance of the robust knapsack problem is generated randomly with |N| = 200 and capacity
limit, b equals 20, 000. The nominal weight w; is randomly chosen from the set {100,...,1500}, the cost
¢; is randomly chosen from the set {10,000, ...,15,000}, and the standard deviation o; is dependent on
¢; such that o; = 6;¢;, where ¢; is uniformly distributed in [0, 1]. We vary the parameter Q from 1 to
5 and report in Table 2 the best attainable objective, Zp, the number of instance of nominal problem

solved, as well as the optimality gap €.

Q Zg Iterations € e/Zy
1.0 | 1965421.36 4 0 0
2.0 | 2054638.82 6 0 0
2.5 | 2097656.46 6 0 0
3.0 | 2140207.75 6 3.1145 | 1.45523 x 1076
3.05 | 2144317.00 5 0 0
3.5 | 2182235.78 5 0 0
4.0 | 2224365.19 6 3.4046 | 1.53059 x 10~°
4.5 | 2266054.21 7 0 0
5.0 | 2307475.12 8 0 0

Table 2: Performance of Algorithm 2 on the robust knapsack problem.

It is surprising that in all of the instances, we can obtain the optimal solution of the robust problem
using a small number of iterations. Even for the cases, Q2 = 3,4, where the Algorithm 2 terminates with
more than one local minimum solutions, the resulting optimality gap is very small, which is usually

acceptable in practical settings.

7.2 The Robust Minimum Cost over a Uniform Matroid

We consider the problem of minimizing the total cost of selecting k items out of a set of n items that

can be expressed as the following integer programming problem:

minimize g Ci %y

1EN

subject to Z z, =k (43)
1EN
x € {0,1}".
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In this problem, the cost components are subjected to uncertainty. If the model is deterministic, we
can easily solve the problem in O(nlogn) by sorting the costs in ascending order and choosing the first

k items. In the robust framework under the ellipsoidal uncertainty set, we solve the following problem:

minimize '@+ QVd'x

subject to Z x, =k (44)
1EN
xz € {0,1}".

Since the underlying set is a matroid, it is well known that Problem (44) can be solved in strongly
polynomial time using parametric programming. Instead, we apply Algorithm 2 and observe the number
of iterations needed before converging to a local minimum solution. Setting |k| = |N|/2, ¢; and o; =
\/d; being uniformly distributed in [5000,20000] and [500, 5000] respectively, we study the convergence
properties as we vary |N| from 200 to 20,000 and €2 from 1 to 3. For a given |N| and Q, we generate
c and d randomly and solve 100 instances of the problem. Aggregating the results from solving the
100 instances, we report in Table 3 the average number of iterations before finding a local solution, the
maximum relative optimality gap, ¢/Zy and the percentage of the local minimum solutions that are
global, i.e., ¢ = 0.

The overall performance of Algorithm 2 is surprisingly good. It also suggests scalability, as the
number of iterations is marginally affected by an increase in |N|. In fact, in most of the problems
tested, we obtain the optimal solution by solving less than 10 iterations of the nominal problem. Even
in cases when local solutions are found, the corresponding optimality gap is negligible. In summary,

Algorithm 2 seems practically promising.

8 Conclusions

A message of the present paper is that the complexity of robust discrete optimization is affected by the
choice of the uncertainty set. For ellipsoidal uncertainty sets, we have shown an increase in complexity for
the robust counterpart of a discrete optimization problem for general covariance matrices 3 (correlated
data), a preservation of complexity when ¥ = oI (uncorrelated and identically distributed data), while
we have left open the complexity when the matrix X is diagonal (uncorrelated data). In the latter case,

we proposed two algorithms that in computational experiments have excellent empirical performance.
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Q| |N| | Ave. Iter. | max(¢/Zy) | Opt. Sol. %
1| 200 5.73 7.89 x 1077 98%
1| 500 5.91 3.71 x 1078 99%
1 | 1000 6.18 5.80 x 107? 99%
1| 2000 6.43 0 100%
1| 5000 6.72 0 100%
1 | 10000 6.92 0 100%
1 | 20000 6.98 0 100%
2 | 200 6.24 0 100%
2 | 500 6.50 0 100%
2 | 1000 6.80 0 100%
2 | 2000 6.95 0 100%
2 | 5000 6.98 0 100%
2 | 10000 7.01 0 100%
2 | 20000 7.02 0 100%
3| 200 6.55 1.62 x 107° 94%
3| 500 6.85 7.95 x 1078 97%
3| 1000 6.92 0 100%
3| 2000 7.01 1.08 x 1079 99%
3 | 5000 7.06 5.13 x 10710 98%
3 | 10000 7.07 0 100%
3 | 20000 7.07 0 100%

Table 3: Performance of Algorithm 2 on the robust minimum cost problem over a uniform matroid.
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